Construction of B-spline surface from cubic B-spline asymptotic quadrilateral

نویسندگان

  • Hui WANG
  • Chun-Gang ZHU
  • Cai-Yun LI
چکیده

Asymptote is widely used in astronomy, mechanics, architecture and relevant subjects. In this paper, by analyzing the Frenet frame and the Darboux frame of a curve on the surface, the necessary and sufficient conditions for a quadrilateral boundary being asymptotic of a surface are derived. This quadrilateral is called asymptotic quadrilateral. Given corner data including positions, tangents and curvatures of a cubic B-spline quadrilateral with six control points in each boundary, a family of asymptotic quadrilaterals are constructed after solving the identification conditions of the control points. An optimized one is obtained by minimizing the strain energy of the boundary curves. Then, the transverse tangent vectors along the boundaries of the B-spline surface can be obtained by the asymptotic conditions and the resulting B-spline surface is of bi-quintic degree. Two arrays of control points of the surface along the quadrilateral are obtained from combinations transverse tangent vectors and the boundaries which are elevated from the cubic B-spline curves. For the given inner control points, B-spline surface of bi-quintic degree interpolating the cubic B-spline asymptotic quadrilateral is constructed. The optimized surface is the one with the minimized thin plate spline energy. The method is verified by some representative examples including the boundary curves with lines and inflections. Such interpolation scheme for the construction of the tensor-product B-spline surfaces is compatible with the CAD systems. : Asymptotic curves, B-spline surface, Interpolation, Quadrilateral, Inflection

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piecewise cubic interpolation of fuzzy data based on B-spline basis functions

In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...

متن کامل

Solving a nonlinear inverse system of Burgers equations

By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...

متن کامل

3D Reconstruction Using Cubic Bezier Spline Curves and Active Contours (Case Study)

Introduction 3D reconstruction of an object from its 2D cross-sections (slices) has many applications in different fields of sciences such as medical physics and biomedical engineering. In order to perform 3D reconstruction, at first, desired boundaries at each slice are detected and then using a correspondence between points of successive slices surface of desired object is reconstructed. Mate...

متن کامل

Quartic and pantic B-spline operational matrix of fractional integration

In this work, we proposed an effective method based on cubic and pantic B-spline scaling functions to solve partial differential equations of fractional order. Our method is based on dual functions of B-spline scaling functions. We derived the operational matrix of fractional integration of cubic and pantic B-spline scaling functions and used them to transform the mentioned equations to a syste...

متن کامل

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017